12 research outputs found

    Sporadic Creutzfeldt-Jakob disease VM1: phenotypic and molecular characterization of a novel subtype of human prion disease

    Full text link
    The methionine (M)-valine (V) polymorphic codon 129 of the prion protein gene (PRNP) plays a central role in both susceptibility and phenotypic expression of sporadic Creutzfeldt-Jakob diseases (sCJD). Experimental transmissions of sCJD in humanized transgenic mice led to the isolation of five prion strains, named M1, M2C, M2T, V2, and V1, based on two major conformations of the pathological prion protein (PrPSc, type 1 and type 2), and the codon 129 genotype determining susceptibility and propagation efficiency. While the most frequent sCJD strains have been described in codon 129 homozygosis (MM1, MM2C, VV2) and heterozygosis (MV1, MV2K, and MV2C), the V1 strain has only been found in patients carrying VV. We identified six sCJD cases, 4 in Catalonia and 2 in Italy, carrying MV at PRNP codon 129 in combination with PrPSc type 1 and a new clinical and neuropathological profile reminiscent of the VV1 sCJD subtype rather than typical MM1/MV1. All patients had a relatively long duration (mean of 20.5 vs. 3.5 months of MM1/MV1 patients) and lacked electroencephalographic periodic sharp-wave complexes at diagnosis. Distinctive histopathological features included the spongiform change with vacuoles of larger size than those seen in sCJD MM1/MV1, the lesion profile with prominent cortical and striatal involvement, and the pattern of PrPSc deposition characterized by a dissociation between florid spongiform change and mild synaptic deposits associated with coarse, patch-like deposits in the cerebellar molecular layer. Western blot analysis of brain homogenates revealed a PrPSc type 1 profile with physicochemical properties reminiscent of the type 1 protein linked to the VV1 sCJD subtype. In summary, we have identified a new subtype of sCJD with distinctive clinicopathological features significantly overlapping with those of the VV1 subtype, possibly representing the missing evidence of V1 sCJD strain propagation in the 129MV host genotype

    A meta-analysis reveals the commonalities and differences in Arabidopsis thaliana response to different viral pathogens

    Get PDF
    Understanding the mechanisms by which plants trigger host defenses in response to viruses has been a challenging problem owing to the multiplicity of factors and complexity of interactions involved. The advent of genomic techniques, however, has opened the possibility to grasp a global picture of the interaction. Here, we used Arabidopsis thaliana to identify and compare genes that are differentially regulated upon infection with seven distinct (+)ssRNA and one ssDNA plant viruses. In the first approach, we established lists of genes differentially affected by each virus and compared their involvement in biological functions and metabolic processes. We found that phylogenetically related viruses significantly alter the expression of similar genes and that viruses naturally infecting Brassicaceae display a greater overlap in the plant response. In the second approach, virus-regulated genes were contextualized using models of transcriptional and protein-protein interaction networks of A. thaliana. Our results confirm that host cells undergo significant reprogramming of their transcriptome during infection, which is possibly a central requirement for the mounting of host defenses. We uncovered a general mode of action in which perturbations preferentially affect genes that are highly connected, central and organized in modules. © 2012 Rodrigo et al.This work was supported by the Spanish Ministerio de Ciencia e Innovacion (MICINN) grants BFU2009-06993 (S. F. E.) and BIO2006-13107 (C. L.) and by Generalitat Valenciana grant PROMETEO2010/016 (S. F. E.). G. R. is supported by a graduate fellowship from the Generalitat Valenciana (BFPI2007-160) and J.C. by a contract from MICINN grant TIN2006-12860. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Rodrigo Tarrega, G.; Carrera Montesinos, J.; Ruiz-Ferrer, V.; Del Toro, F.; Llave, C.; Voinnet, O.; Elena Fito, SF. (2012). A meta-analysis reveals the commonalities and differences in Arabidopsis thaliana response to different viral pathogens. PLoS ONE. 7(7):40526-40526. https://doi.org/10.1371/journal.pone.0040526S405264052677Peng, X., Chan, E. Y., Li, Y., Diamond, D. L., Korth, M. J., & Katze, M. G. (2009). Virus–host interactions: from systems biology to translational research. Current Opinion in Microbiology, 12(4), 432-438. doi:10.1016/j.mib.2009.06.003Dodds, P. N., & Rathjen, J. P. (2010). Plant immunity: towards an integrated view of plant–pathogen interactions. Nature Reviews Genetics, 11(8), 539-548. doi:10.1038/nrg2812Maule, A., Leh, V., & Lederer, C. (2002). The dialogue between viruses and hosts in compatible interactions. Current Opinion in Plant Biology, 5(4), 279-284. doi:10.1016/s1369-5266(02)00272-8Whitham, S. A., Quan, S., Chang, H.-S., Cooper, B., Estes, B., Zhu, T., … Hou, Y.-M. (2003). Diverse RNA viruses elicit the expression of common sets of genes in susceptibleArabidopsis thalianaplants. The Plant Journal, 33(2), 271-283. doi:10.1046/j.1365-313x.2003.01625.xBailer, S., & Haas, J. (2009). Connecting viral with cellular interactomes. Current Opinion in Microbiology, 12(4), 453-459. doi:10.1016/j.mib.2009.06.004Whitham, S. A., Yang, C., & Goodin, M. M. (2006). Global Impact: Elucidating Plant Responses to Viral Infection. Molecular Plant-Microbe Interactions, 19(11), 1207-1215. doi:10.1094/mpmi-19-1207MacPherson, J. I., Dickerson, J. E., Pinney, J. W., & Robertson, D. L. (2010). Patterns of HIV-1 Protein Interaction Identify Perturbed Host-Cellular Subsystems. PLoS Computational Biology, 6(7), e1000863. doi:10.1371/journal.pcbi.1000863Jenner, R. G., & Young, R. A. (2005). Insights into host responses against pathogens from transcriptional profiling. Nature Reviews Microbiology, 3(4), 281-294. doi:10.1038/nrmicro1126Andeweg, A. C., Haagmans, B. L., & Osterhaus, A. D. (2008). Virogenomics: the virus–host interaction revisited. Current Opinion in Microbiology, 11(5), 461-466. doi:10.1016/j.mib.2008.09.010Elena, S. F., Carrera, J., & Rodrigo, G. (2011). A systems biology approach to the evolution of plant–virus interactions. Current Opinion in Plant Biology, 14(4), 372-377. doi:10.1016/j.pbi.2011.03.013Tan, S.-L., Ganji, G., Paeper, B., Proll, S., & Katze, M. G. (2007). Systems biology and the host response to viral infection. Nature Biotechnology, 25(12), 1383-1389. doi:10.1038/nbt1207-1383De la Fuente, A. (2010). From ‘differential expression’ to ‘differential networking’ – identification of dysfunctional regulatory networks in diseases. Trends in Genetics, 26(7), 326-333. doi:10.1016/j.tig.2010.05.001Albert, R. (2005). Scale-free networks in cell biology. Journal of Cell Science, 118(21), 4947-4957. doi:10.1242/jcs.02714Yu, H., Braun, P., Yildirim, M. A., Lemmens, I., Venkatesan, K., Sahalie, J., … Vidal, M. (2008). High-Quality Binary Protein Interaction Map of the Yeast Interactome Network. Science, 322(5898), 104-110. doi:10.1126/science.1158684Barabási, A.-L., & Oltvai, Z. N. (2004). Network biology: understanding the cell’s functional organization. Nature Reviews Genetics, 5(2), 101-113. doi:10.1038/nrg1272Albert, R., Jeong, H., & Barabási, A.-L. (2000). Error and attack tolerance of complex networks. Nature, 406(6794), 378-382. doi:10.1038/35019019Mukhtar, M. S., Carvunis, A.-R., Dreze, M., Epple, P., Steinbrenner, J., … Moore, J. (2011). Independently Evolved Virulence Effectors Converge onto Hubs in a Plant Immune System Network. Science, 333(6042), 596-601. doi:10.1126/science.1203659Calderwood, M. A., Venkatesan, K., Xing, L., Chase, M. R., Vazquez, A., Holthaus, A. M., … Johannsen, E. (2007). Epstein-Barr virus and virus human protein interaction maps. Proceedings of the National Academy of Sciences, 104(18), 7606-7611. doi:10.1073/pnas.0702332104De Chassey, B., Navratil, V., Tafforeau, L., Hiet, M. S., Aublin‐Gex, A., Agaugué, S., … Lotteau, V. (2008). Hepatitis C virus infection protein network. Molecular Systems Biology, 4(1), 230. doi:10.1038/msb.2008.66Shapira, S. D., Gat-Viks, I., Shum, B. O. V., Dricot, A., de Grace, M. M., Wu, L., … Hacohen, N. (2009). A Physical and Regulatory Map of Host-Influenza Interactions Reveals Pathways in H1N1 Infection. Cell, 139(7), 1255-1267. doi:10.1016/j.cell.2009.12.018Dyer, M. D., Murali, T. M., & Sobral, B. W. (2008). The Landscape of Human Proteins Interacting with Viruses and Other Pathogens. PLoS Pathogens, 4(2), e32. doi:10.1371/journal.ppat.0040032Golem, S., & Culver, J. N. (2003). Tobacco mosaic virusInduced Alterations in the Gene Expression Profile ofArabidopsis thaliana. Molecular Plant-Microbe Interactions, 16(8), 681-688. doi:10.1094/mpmi.2003.16.8.681Espinoza, C., Medina, C., Somerville, S., & Arce-Johnson, P. (2007). Senescence-associated genes induced during compatible viral interactions with grapevine and Arabidopsis. Journal of Experimental Botany, 58(12), 3197-3212. doi:10.1093/jxb/erm165Yang, C., Guo, R., Jie, F., Nettleton, D., Peng, J., Carr, T., … Whitham, S. A. (2007). Spatial Analysis ofArabidopsis thalianaGene Expression in Response toTurnip mosaic virusInfection. Molecular Plant-Microbe Interactions, 20(4), 358-370. doi:10.1094/mpmi-20-4-0358Agudelo-Romero, P., Carbonell, P., de la Iglesia, F., Carrera, J., Rodrigo, G., Jaramillo, A., … Elena, S. F. (2008). Changes in the gene expression profile of Arabidopsis thaliana after infection with Tobacco etch virus. Virology Journal, 5(1), 92. doi:10.1186/1743-422x-5-92Agudelo-Romero, P., Carbonell, P., Perez-Amador, M. A., & Elena, S. F. (2008). Virus Adaptation by Manipulation of Host’s Gene Expression. PLoS ONE, 3(6), e2397. doi:10.1371/journal.pone.0002397Ascencio-Ibáñez, J. T., Sozzani, R., Lee, T.-J., Chu, T.-M., Wolfinger, R. D., Cella, R., & Hanley-Bowdoin, L. (2008). Global Analysis of Arabidopsis Gene Expression Uncovers a Complex Array of Changes Impacting Pathogen Response and Cell Cycle during Geminivirus Infection. Plant Physiology, 148(1), 436-454. doi:10.1104/pp.108.121038Babu, M., Griffiths, J. S., Huang, T.-S., & Wang, A. (2008). Altered gene expression changes in Arabidopsis leaf tissues and protoplasts in response to Plum pox virus infection. BMC Genomics, 9(1), 325. doi:10.1186/1471-2164-9-325De Vienne, D. M., Giraud, T., & Martin, O. C. (2007). A congruence index for testing topological similarity between trees. Bioinformatics, 23(23), 3119-3124. doi:10.1093/bioinformatics/btm500Wise, R. P., Moscou, M. J., Bogdanove, A. J., & Whitham, S. A. (2007). Transcript Profiling in Host–Pathogen Interactions. Annual Review of Phytopathology, 45(1), 329-369. doi:10.1146/annurev.phyto.45.011107.143944Handford, M. G., & Carr, J. P. (2007). A defect in carbohydrate metabolism ameliorates symptom severity in virus-infected Arabidopsis thaliana. Journal of General Virology, 88(1), 337-341. doi:10.1099/vir.0.82376-0Hou, B., Lim, E.-K., Higgins, G. S., & Bowles, D. J. (2004). N-Glucosylation of Cytokinins by Glycosyltransferases ofArabidopsis thaliana. Journal of Biological Chemistry, 279(46), 47822-47832. doi:10.1074/jbc.m409569200Schwender, J., Goffman, F., Ohlrogge, J. B., & Shachar-Hill, Y. (2004). Rubisco without the Calvin cycle improves the carbon efficiency of developing green seeds. Nature, 432(7018), 779-782. doi:10.1038/nature03145Pagán, I., Alonso-Blanco, C., & García-Arenal, F. (2008). Host Responses in Life-History Traits and Tolerance to Virus Infection in Arabidopsis thaliana. PLoS Pathogens, 4(8), e1000124. doi:10.1371/journal.ppat.1000124Carrera, J., Rodrigo, G., Jaramillo, A., & Elena, S. F. (2009). Reverse-engineering the Arabidopsis thaliana transcriptional network under changing environmental conditions. Genome Biology, 10(9), R96. doi:10.1186/gb-2009-10-9-r96Geisler-Lee, J., O’Toole, N., Ammar, R., Provart, N. J., Millar, A. H., & Geisler, M. (2007). A Predicted Interactome for Arabidopsis. Plant Physiology, 145(2), 317-329. doi:10.1104/pp.107.103465Ma, S., Gong, Q., & Bohnert, H. J. (2007). An Arabidopsis gene network based on the graphical Gaussian model. Genome Research, 17(11), 1614-1625. doi:10.1101/gr.6911207Yamada, T., & Bork, P. (2009). Evolution of biomolecular networks — lessons from metabolic and protein interactions. Nature Reviews Molecular Cell Biology, 10(11), 791-803. doi:10.1038/nrm2787Humphries, M. D., & Gurney, K. (2008). Network ‘Small-World-Ness’: A Quantitative Method for Determining Canonical Network Equivalence. PLoS ONE, 3(4), e0002051. doi:10.1371/journal.pone.0002051Stumpf, M. P. H., & Ingram, P. J. (2005). Probability models for degree distributions of protein interaction networks. Europhysics Letters (EPL), 71(1), 152-158. doi:10.1209/epl/i2004-10531-8Khanin, R., & Wit, E. (2006). How Scale-Free Are Biological Networks. Journal of Computational Biology, 13(3), 810-818. doi:10.1089/cmb.2006.13.810Daudin, J.-J., Picard, F., & Robin, S. (2007). A mixture model for random graphs. Statistics and Computing, 18(2), 173-183. doi:10.1007/s11222-007-9046-7Uetz, P. (2006). Herpesviral Protein Networks and Their Interaction with the Human Proteome. Science, 311(5758), 239-242. doi:10.1126/science.1116804Choi, I.-R., Stenger, D. C., & French, R. (2000). Multiple Interactions among Proteins Encoded by the Mite-Transmitted Wheat Streak Mosaic Tritimovirus. Virology, 267(2), 185-198. doi:10.1006/viro.1999.0117Guo, D., Saarma, M., Rajamäki, M.-L., & Valkonen, J. P. T. (2001). Towards a protein interaction map of potyviruses: protein interaction matrixes of two potyviruses based on the yeast two-hybrid system. Journal of General Virology, 82(4), 935-939. doi:10.1099/0022-1317-82-4-935Lin, L., Shi, Y., Luo, Z., Lu, Y., Zheng, H., Yan, F., … Wu, Y. (2009). Protein–protein interactions in two potyviruses using the yeast two-hybrid system. Virus Research, 142(1-2), 36-40. doi:10.1016/j.virusres.2009.01.006Shen, W., Wang, M., Yan, P., Gao, L., & Zhou, P. (2010). Protein interaction matrix of Papaya ringspot virus type P based on a yeast two-hybrid system. Acta Virologica, 54(1), 49-54. doi:10.4149/av_2010_01_49Redner, S. (2008). Teasing out the missing links. Nature, 453(7191), 47-48. doi:10.1038/453047aIrizarry, R. A. (2003). Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics, 4(2), 249-264. doi:10.1093/biostatistics/4.2.249Smyth, G. K. (2004). Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments. Statistical Applications in Genetics and Molecular Biology, 3(1), 1-25. doi:10.2202/1544-6115.1027Allemeersch, J., Durinck, S., Vanderhaeghen, R., Alard, P., Maes, R., Seeuws, K., … Kuiper, M. T. R. (2005). Benchmarking the CATMA Microarray. A Novel Tool forArabidopsis Transcriptome Analysis. Plant Physiology, 137(2), 588-601. doi:10.1104/pp.104.051300Cleveland, W. S. (1979). Robust Locally Weighted Regression and Smoothing Scatterplots. Journal of the American Statistical Association, 74(368), 829-836. doi:10.1080/01621459.1979.10481038Tarraga, J., Medina, I., Carbonell, J., Huerta-Cepas, J., Minguez, P., Alloza, E., … Dopazo, J. (2008). GEPAS, a web-based tool for microarray data analysis and interpretation. Nucleic Acids Research, 36(Web Server), W308-W314. doi:10.1093/nar/gkn303Al-Shahrour, F., Minguez, P., Vaquerizas, J. M., Conde, L., & Dopazo, J. (2005). BABELOMICS: a suite of web tools for functional annotation and analysis of groups of genes in high-throughput experiments. Nucleic Acids Research, 33(Web Server), W460-W464. doi:10.1093/nar/gki456Al-Shahrour, F., Minguez, P., Tárraga, J., Medina, I., Alloza, E., Montaner, D., & Dopazo, J. (2007). FatiGO +: a functional profiling tool for genomic data. Integration of functional annotation, regulatory motifs and interaction data with microarray experiments. Nucleic Acids Research, 35(suppl_2), W91-W96. doi:10.1093/nar/gkm260Mueller, L. A., Zhang, P., & Rhee, S. Y. (2003). AraCyc: A Biochemical Pathway Database for Arabidopsis. Plant Physiology, 132(2), 453-460. doi:10.1104/pp.102.017236Navratil, V., de Chassey, B., Combe, C., & Lotteau, V. (2011). When the human viral infectome and diseasome networks collide: towards a systems biology platform for the aetiology of human diseases. BMC Systems Biology, 5(1), 13. doi:10.1186/1752-0509-5-13Shannon, C. E. (1948). A Mathematical Theory of Communication. Bell System Technical Journal, 27(3), 379-423. doi:10.1002/j.1538-7305.1948.tb01338.

    Crohn’s Disease, Host–Microbiota Interactions, and Immunonutrition: Dietary Strategies Targeting Gut Microbiome as Novel Therapeutic Approaches

    No full text
    Crohn’s disease (CD) is a complex, disabling, idiopathic, progressive, and destructive disorder with an unknown etiology. The pathogenesis of CD is multifactorial and involves the interplay between host genetics, and environmental factors, resulting in an aberrant immune response leading to intestinal inflammation. Due to the high morbidity and long-term management of CD, the development of non-pharmacological approaches to mitigate the severity of CD has recently attracted great attention. The gut microbiota has been recognized as an important player in the development of CD, and general alterations in the gut microbiome have been established in these patients. Thus, the gut microbiome has emerged as a pre-eminent target for potential new treatments in CD. Epidemiological and interventional studies have demonstrated that diet could impact the gut microbiome in terms of composition and functionality. However, how specific dietary strategies could modulate the gut microbiota composition and how this would impact host–microbe interactions in CD are still unclear. In this review, we discuss the most recent knowledge on host–microbe interactions and their involvement in CD pathogenesis and severity, and we highlight the most up-to-date information on gut microbiota modulation through nutritional strategies, focusing on the role of the microbiota in gut inflammation and immunity

    Summary of topological properties of the differentially expressed VRGs from several viral infections contextualized in the <i>A. thaliana</i> TRN and PPIN.

    No full text
    <p>We show the number of VRGs and VRFs (over- and under-expressed), the number of interactions (edges) manipulated by the virus, the power-law distribution exponent (for connectivity γ), the average connectivity (<i>(k)</i>), and the average betweenness (<i>(b)</i>). We also show the P-value for the tests comparing the shape and location of the VRGs distributions with respect to the corresponding whole interactome (aStudent <i>t</i>-test, bMann-Whitney <i>U</i>-test).</p

    Measures of subnetwork organization.

    No full text
    <p>(A, B) Clustering (<i>C</i>) and (C, D) modularity (<i>M</i>) coefficients for the subnetworks generated by the VRGs, contextualized in the TRN and PPIN. <i>Rand</i> indicates the average value for random subnetworks (100 replicates). NS denotes non-significant value following a one-tailed <i>z</i>-test. Horizontal dashed lines represent the cutoff value for statistical significance.</p

    Phylogenetic relationships among viruses explain the similarities in gene expression.

    No full text
    <p>(A) Neighbor-joining dendrogram constructed using the similarity matrix computed from the lists of differentially expressed genes. Bootstrap support values are reported next to each node. (B) Maximum-likelihood phylogenetic tree constructed from the replicase genes of the seven RNA viruses included in the study. For CaLCuV, the Rep (replicase-associated protein) was used instead. The statistical quality of the different clusters was evaluated by bootstrap. Significance levels are shown next to each node.</p

    Overview of the Systems Biology approach we followed to study the viral infection in plants.

    No full text
    <p>We considered <i>A. thaliana</i> as model host. Microarray data from several infection experiments with viruses were collected to analyze the differentially expressed genes, and to perform functional analyses by harnessing GO annotations. In addition, by taking advantage of large databases of expression profiles derived from transcriptional perturbations, the global regulatory network of the host could be as a first approach unveiled by applying learning algorithms. The differential expression was then contextualized within the inferred network.</p

    Functional analysis.

    No full text
    <p>(A) Over- and (B) under-expressed VRFs representing biological processes. In pallid red, VRFs present in at least five of the total eight viral infections (unspecific viral response); in pallid blue, VRFs in at least three of the four potyviral infections; in pallid green, VRFs in at least three of the four <i>Brassica</i>-infecting viral infections; in pallid yellow, common VRFs for <i>Potyvirus</i> and <i>Brassica</i>-infecting viruses.</p
    corecore